# UNIT – III

# **Measures of Central Tendency**

(1) Find the Mean, Median and Mode from the following distribution:

| Daily Sale in<br>Rs. | No. of<br>shops | V    |       | Mean                                                                         |
|----------------------|-----------------|------|-------|------------------------------------------------------------------------------|
| 0 – 200              | 8               | 100  | 800   | $\overline{\mathbf{x}} = \frac{\sum \mathbf{f} \mathbf{x}}{\sum \mathbf{f}}$ |
| 200 - 400            | 12              | 300  | 3600  | $=\frac{60400}{100}$                                                         |
| 400 - 600            | 30              | 500  | 15000 | = 604                                                                        |
| 600 - 800            | 25              | 700  | 17500 |                                                                              |
| 800 - 1000           | 20              | 900  | 18000 |                                                                              |
| 1000 - 1200          | 5               | 1100 | 5500  |                                                                              |
|                      | 100             |      | 60400 |                                                                              |

#### Solution:

Median:

| Sale                | No. of shops | cf  |
|---------------------|--------------|-----|
| 0 - 200             | 8            | 8   |
| 200 - 400           | 12           | 20  |
| 400 - 600           | 30           | 50  |
| 600 - 800           | 25           | 75  |
| 800 - 1000          | 20           | 95  |
| 1000 - 1200         | 5            | 100 |
| $\frac{N}{2} = \xi$ | 50           |     |

Med class 400 - 600

$$\mathbf{M} = \mathbf{l}_1 + \frac{(\mathbf{l}_2 - \mathbf{l}_1)\left(\frac{\mathbf{N}}{2} - \mathbf{cf}\right)}{\mathbf{f}}$$

# $= 400 + \frac{200(50 - 20)}{30}$ $= 400 + \frac{200 \times 30}{30}$ = 600

Mode:

$$Z = l_1 + (l_2 - l_1) \frac{f_1 - f_0}{(2f_1 - f_0 - f_2)}$$
$$= 400 + \frac{200 (18)}{60 - 12 - 25}$$
$$= 400 + \frac{200(18)}{23}$$
$$= 400 + 156.52 = 556.52$$

49

VV

(2) Compute Median and Mode from the following distribution:

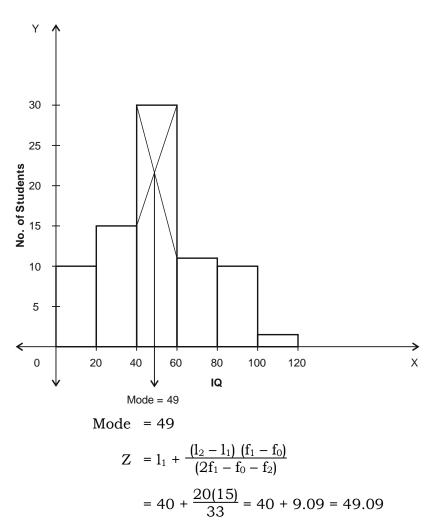
| Rainfall in<br>cms | No. of cities | cf |
|--------------------|---------------|----|
| 0 - 10             | 10            | 10 |
| 10 – 20            | 15            | 25 |
| 20 - 30            | 20            | 45 |
| 30 - 40            | 10            | 55 |
| 40 – 50            | 5             | 60 |

#### Solution:

#### Median:

N = 60, 
$$\frac{N}{2}$$
 = 30

Med class: Class containing  $\frac{N}{2}$  = 30<sup>th</sup> obs 20 – 30.


$$M = l_1 + \frac{(l_2 - l_1)\left(\frac{N}{2} - cf\right)}{f}$$
$$= 20 + \frac{10(30 - 25)}{20}$$
$$= 20 + \frac{10(5)}{20} = 20 + 2.5 = 22.5$$

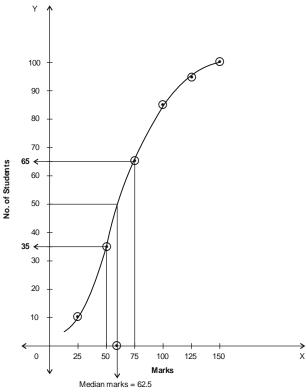
Mode:

$$Z = l_1 + (l_2 - l_1) \frac{f_1 - f_0}{(2f_1 - f_0 - f_2)}$$
$$= 20 + \frac{10(20 - 15)}{2 \times 20 - 15 - 10}$$
$$= 20 + \frac{10(5)}{15} = 20 + 3.33 = 23.33$$

(3) Locate mode using Histogram for the following distribution:

|     | IQ              | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
|-----|-----------------|------|-------|-------|-------|--------|---------|
|     | No. of students | 10   | 15    | 30    | 12    | 10     | 3       |
| Sol | ution:          |      |       |       |       |        |         |




V V V

(4) Draw less than Ogive for the following distribution: Find (i) Median marks (ii) No. of students who have scored < 50. (iii

| 11) | No. | ot | stud | lents | who | have | scored | _ > | 75 | • |
|-----|-----|----|------|-------|-----|------|--------|-----|----|---|
|     |     |    |      |       |     |      |        |     |    |   |

| Marks           | 0-25 | 25-50 | 50-75 | 75-100 | 100-125 | 125-150 |
|-----------------|------|-------|-------|--------|---------|---------|
| No. of students | 10   | 25    | 30    | 20     | 10      | 5       |
| 1               |      |       |       |        |         |         |

| Marks           | 0-25 | 25-50 | 50-75 | 75-100 | 100-125 | 125-150 |
|-----------------|------|-------|-------|--------|---------|---------|
| No. of students | 10   | 25    | 30    | 20     | 10      | 5       |
| cf              | 10   | 35    | 65    | 85     | 95      | 100     |



- $\therefore$  No. of students who have scored < 50 = 35
- $\therefore$  No. of students who have scored > 75 = 100 65 = 35.

52

(5) Compute 3rd Quartile, 7th Decile & 35th Percentile for the following distribution:

| Commission in 000 Rs | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
|----------------------|------|-------|-------|-------|-------|-------|-------|
| No. of Salesmen      | 7    | 20    | 25    | 18    | 15    | 10    | 5     |
| cf                   | 7    | 27    | 52    | 70    | 85    | 95    | 100   |
| a 4                  |      |       |       |       |       |       |       |

3rd Quartile:  

$$\frac{3N}{4} = \frac{3 \times 100}{4} = 75$$

$$Q_3 = l_1 + \frac{(l_2 - l_1)\left(\frac{3N}{4} - cf\right)}{f}$$

$$= 40 + \frac{10(75 - 70)}{15}$$

$$= 40 + \frac{10(5)}{15} = 43.33$$
7th Decile:  

$$\frac{7N}{10} = \frac{7 \times 100}{10} = 70$$

$$D_7 = l_1 + \frac{(l_2 - l_1)\left(\frac{7N}{4} - cf\right)}{f}$$

$$= 30 + \frac{10(75 - 70)}{18}$$

$$= 40 + \frac{10(18)}{18} = 30 + 10 = 40$$
35th Percentile:  

$$\frac{35N}{100} = 35$$

$$P_{35} = l_1 + \frac{(l_2 - l_1)\left(\frac{35N}{100} - cf\right)}{f}$$

$$= 20 + \frac{10(35 - 27)}{25}$$

$$= 20 + \frac{10(8)}{25} = 23.2$$

(6) Compute 1st Quartile, 4th Decile & 65th Percentile for the following distribution:

| Production in tons | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
|--------------------|------|-------|-------|-------|-------|-------|-------|
| No. of firms       | 10   | 15    | 20    | 25    | 15    | 10    | 5     |
| cf                 | 10   | 25    | 45    | 70    | 85    | 95    | 100   |

Solution:

54

1st Quartile:

$$\frac{N}{4} = 25$$

$$Q_1 = l_1 + \frac{(l_2 - l_1)\left(\frac{N}{4} - cf\right)}{f}$$
$$= 10 + \frac{10(25 - 10)}{15}$$
$$= 10 + \frac{10(15)}{15} = 10 + 10 = 20$$

4th Decile:

$$\frac{4N}{10}$$
 = 40

$$D_4 = l_1 + \frac{(l_2 - l_1)\left(\frac{4N}{10} - cf\right)}{f}$$
$$= 20 + \frac{10(40 - 25)}{20}$$
$$= 20 + \frac{10(15)}{20} = 20 + 7.5 = 27.5$$

**65th Percentile:**  $\frac{65N}{100} = 65$ 

$$P_{65} = l_1 + \frac{(l_2 - l_1)\left(\frac{65N}{100} - cf\right)}{f}$$
$$= 30 + \frac{10(65 - 45)}{25}$$
$$= 30 + \frac{10(20)}{25} = 30 + 8 = 38$$

Tutorial Workbook in Mathematical and Statistical Techniques

#### 

(7) <u>Compute three Quartiles for the following distribution:</u>

| Turnover in 000 Rs | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
|--------------------|------|-------|-------|-------|-------|-------|
| No. of firms       | 20   | 35    | 45    | 30    | 20    | 10    |
| cf                 | 20   | 55    | 100   | 130   | 150   | 160   |
|                    |      |       |       |       |       |       |

#### Solution:

 $Q_1:$ 

 $Q_2:$ 

 $Q_3$ :

$$\frac{N}{4} = \frac{160}{4} = 40$$

$$Q_{1} = l_{1} + \frac{(l_{2} - l_{1})\left(\frac{N}{4} - cf\right)}{f}$$

$$= 10 + \frac{10(40 - 20)}{35}$$

$$= 10 + \frac{200}{15}$$

$$= 10 + \frac{200}{15}$$

$$= 15.71$$

$$\frac{N}{2} = \frac{160}{2} = 80$$

$$Q_{2} = l_{1} + \frac{(l_{2} - l_{1})\left(\frac{N}{2} - cf\right)}{f}$$

$$= 20 + \frac{10(80 - 55)}{45}$$

$$= 20 + \frac{10(25)}{45}$$

$$= 20 + \frac{10(25)}{45}$$

$$= 25.55$$

$$\frac{3N}{4} = \frac{3 \times 160}{4} = 120$$

$$Q_{3} = l_{1} + \frac{(l_{2} - l_{1})\left(\frac{3N}{4} - cf\right)}{f}$$

$$= 30 + \frac{10(120 - 100)}{30}$$

$$= 30 + \frac{10(20)}{30}$$

$$= 36.66$$

(8) Compute three Quartiles for the following distribution:

| · · ·        |                 |    | 0  |    |    |    |    |    |     |
|--------------|-----------------|----|----|----|----|----|----|----|-----|
|              | Marks Less than | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90  |
|              | No. of students | 5  | 15 | 20 | 35 | 50 | 70 | 90 | 100 |
| <b>~</b> • • |                 |    |    |    |    |    |    |    |     |

#### Solution:

| Marks    | 0-20                                  | 20-30                   | 30-40     | 40-50     | 50-60     | 60-70     | 70-80     | 80-90      |  |
|----------|---------------------------------------|-------------------------|-----------|-----------|-----------|-----------|-----------|------------|--|
| No. of   | = 5                                   | = 15 – 5                | = 20 - 15 | = 35 - 20 | = 50 - 35 | = 70 - 50 | = 90 - 70 | = 100 - 90 |  |
| students | 5                                     | 10                      | 5         | 15        | 15        | 20        | 20        | 10         |  |
| cf       | 5                                     | 5 15 20 35 50 70 90 100 |           |           |           |           |           |            |  |
| $Q_1:$   | $Q_1: \qquad \qquad \frac{N}{4} = 25$ |                         |           |           |           |           |           |            |  |

 $Q_2$  :

$$Q_{1} = l_{1} + \frac{(l_{2} - l_{1})\left(\frac{N}{4} - cf\right)}{f}$$
$$= 40 + \frac{10(25 - 20)}{15}$$
$$= 40 + \frac{10(5)}{15} = 43.33$$
$$\frac{N}{2} = 50$$
$$Q_{2} = l_{1} + \frac{(l_{2} - l_{1})\left(\frac{N}{2} - cf\right)}{f}$$

$$= 50 + \frac{10(50 - 35)}{15}$$

$$= 50 + \frac{10 \times 15}{15} = 60$$

$$Q_3: \qquad \qquad \frac{3N}{4} = 75$$

$$Q_3 = l_1 + \frac{(l_2 - l_1)\left(\frac{3N}{4} - cf\right)}{f}$$
$$= 70 + \frac{10(75 - 70)}{20}$$

$$= 70 + \frac{50}{20} = 72.5$$

56

| Weights   | 3          | 4            | 1                   | 2                     |  |
|-----------|------------|--------------|---------------------|-----------------------|--|
| Candidate | Graduation | Written Test | Group<br>Discussion | Personal<br>Interview |  |
| Ajay      | 60         | 73           | 45                  | 51                    |  |
| Bipin     | 54         | 65           | 58                  | 53                    |  |
| Kamalesh  | 62         | 80           | 60                  | 52                    |  |
| Hetal     | 73         | 73           | 52                  | 63                    |  |
| Jinal     | 75         | 90           | 62                  | 55                    |  |

(9) The scores of 5 candidates in a selection procedure is given as follows :

Who will be the best candidate?

#### Solution:

| Candidate | ∑wx | ∑w | $\overline{\mathbf{x}} = \frac{\sum \mathbf{w} \mathbf{x}}{\sum \mathbf{w}}$ |
|-----------|-----|----|------------------------------------------------------------------------------|
| Ajay      | 619 | 10 | 61.9                                                                         |
| Bipin     | 586 | 10 | 58.6                                                                         |
| Kamalesh  | 670 | 10 | 67                                                                           |
| Hetal     | 689 | 10 | 68.9                                                                         |
| Jinal     | 757 | 10 | 75.7                                                                         |

Jinal is the best candidate.

(10) The mean marks of a class of 100 students were 70. The mean marks of 45 boys was 50. Find mean marks of remaining girl students.

#### Solution:

|              | ]                     | Boys                              | Girls                                |
|--------------|-----------------------|-----------------------------------|--------------------------------------|
|              | n                     | 1 = 45                            | n <sub>2</sub> = 55                  |
|              | x                     | 1 = 50                            |                                      |
|              | x                     | $=\frac{n_1 \overline{x}_1}{n_1}$ | $+ n_2 \overline{x_2}$<br>+ $n_2$    |
| ,            | 70                    | = <u>45 ×</u>                     | $\frac{50 + 55 \overline{x}_2}{100}$ |
| 700          | 00                    | = 2250                            | $+55 \overline{x}_2$                 |
| .:. <u>-</u> | <b>x</b> <sub>2</sub> | = 4750                            | )                                    |
| 2            | $\bar{\mathbf{x}}_2$  | = 86.3                            | б                                    |

(11) The average production of a firm is 700 units. The average production by the morning shift employees is 500 units & that of evening shift is 800 units. Find the ratio of number of morning to number of evening shift employees.

|                    | Morning                            | Evening                                                  |                           |
|--------------------|------------------------------------|----------------------------------------------------------|---------------------------|
|                    | $\bar{x}_1 = 500$                  | $\bar{x}_2 = 800$                                        | x = 1000                  |
|                    | x                                  | $=\frac{n_{1}\bar{x}_{1}+n_{2}\bar{x}_{2}}{n_{1}+n_{2}}$ | 2                         |
|                    | 1700                               | $=\frac{n_1 \times 500 + n_1 + n_2}{n_1 + n_2}$          | $n_2 \times 800$<br>$n_2$ |
| 700 n <sub>1</sub> | + 700 n <sub>2</sub>               | = 500 n <sub>1</sub> + 8                                 | $000 n_2$                 |
| (700               | – 500)n <sub>2</sub>               | = (800 - 700                                             | <b>))</b> n <sub>2</sub>  |
|                    | $200 n_1$                          | = 100 n <sub>2</sub>                                     |                           |
|                    | $rac{\mathbf{n}_1}{\mathbf{n}_2}$ | $=\frac{100}{200}$                                       |                           |
|                    | $n_1:n_2$                          | 1:2                                                      |                           |

# **Measures of Dispersion**

(1) Calculate Quartile Deviation for the following distribution:

| Marks   | No. of<br>students | cf |  |
|---------|--------------------|----|--|
| 0 - 10  | 5                  | 5  |  |
| 10 – 20 | 15                 | 20 |  |
| 20 - 30 | 20                 | 40 |  |
| 30 - 40 | 10                 | 50 |  |
| 40 – 50 | 10                 | 60 |  |

Solution:

 $N = 60 \frac{N}{4} = 15$  $Q_1$  class: 10 – 20  $Q_1 = l_1 + \frac{(l_2 - l_1)\left(\frac{N}{4} - cf\right)}{r}$  $= 10 + \frac{10(15-5)}{15}$  $= 10 + \frac{100}{15} = 19.33$  $\frac{3N}{4} = 45$ Q<sub>3</sub> class: 30 - 40  $Q_3 = l_1 + \frac{(l_2 - l_1)\left(\frac{3N}{4} - cf\right)}{f}$  $Q_3 = 30 + \frac{10(45 - 40)}{10}$ = 30 + 5 = 35 Q.D. =  $\frac{Q_3 - Q_1}{2}$  $=\frac{35-19.33}{2}=7.833$ 

VV

**V**.

(2) Calculate Quartile Deviation for the following distribution:

| Weight    | No. of<br>Children | cf |
|-----------|--------------------|----|
| 0 – 20    | 3                  | 3  |
| 20 - 40   | 10                 | 13 |
| 40 - 60   | 15                 | 28 |
| 60 - 80   | 12                 | 40 |
| 80 - 100  | 8                  | 48 |
| 100 - 120 | 12                 | 60 |

Solution:

$$\frac{N}{4} = 15$$

 $Q_1$  class: 40 - 60

$$Q_{1} = l_{1} + \frac{(l_{2} - l_{1})\left(\frac{N}{4} - cf\right)}{f}$$
$$= 40 + \frac{20(15 - 13)}{15}$$
$$= 40 + \frac{20 \times 2}{15} = 45.86$$
$$\frac{3N}{4} = 45$$

Q<sub>3</sub> class: 80 - 100

$$Q_{3} = l_{1} + \frac{(l_{2} - l_{1})\left(\frac{3N}{4} - cf\right)}{f}$$

$$Q_{3} = 80 + \frac{20(45 - 40)}{8}$$

$$= 80 + 12.5 = 92.5$$

$$Q.D. = \frac{Q_{3} - Q_{1}}{2}$$

$$= \frac{92.5 - 45.86}{2} = 23.32$$

Tutorial Workbook in Mathematical and Statistical Techniques

#### 

| - / |         |                       |    |      |          |            |  |  |  |
|-----|---------|-----------------------|----|------|----------|------------|--|--|--|
|     | Age     | No. of policy holders | x  | fx   | x - 37.5 | f x - 37.5 |  |  |  |
|     | 10 – 20 | 5                     | 15 | 75   | 22.5     | 112.5      |  |  |  |
|     | 20 - 30 | 10                    | 25 | 250  | 12.5     | 125        |  |  |  |
|     | 30 – 40 | 20                    | 35 | 700  | 2.5      | 50         |  |  |  |
|     | 40 – 50 | 15                    | 45 | 675  | 7.5      | 112.5      |  |  |  |
|     | 50 - 60 | 10                    | 55 | 550  | 17.5     | 175        |  |  |  |
|     |         | 60                    |    | 2250 |          | 575        |  |  |  |

(3) Calculate Mean Deviation from Mean for the following distribution:

$$\bar{\mathbf{x}} = \frac{\sum fx}{\sum f} = \frac{2250}{60} = 37.5$$

M.D. from 
$$\overline{\mathbf{x}} = \frac{\sum \mathbf{f} |\mathbf{x} - \overline{\mathbf{x}}|}{\sum \mathbf{f}}$$
$$= \frac{575}{60}$$
$$= 9.58$$

Vipul's<sup>TM</sup> Tutorial Workbook in Mathematical and Statistical Techniques

(4) Calculate Mean Deviation from Median for the following distribution:

| Monthly Rent in<br>000 Rs | No of Families | cf | x  | x - 33 | f x - 33 |
|---------------------------|----------------|----|----|--------|----------|
| 10 - 20                   | 10             | 10 | 15 | 18     | 180      |
| 20 - 30                   | 26             | 36 | 25 | 8      | 208      |
| 30 - 40                   | 30             | 66 | 35 | 2      | 60       |
| 40 - 50                   | 13             | 79 | 45 | 12     | 156      |
| 50 - 60                   | 7              | 86 | 55 | 22     | 154      |
| 60 - 70                   | 0 4            |    | 65 | 32     | 128      |
|                           |                |    |    |        | 886      |

Solution:

62

$$\frac{N}{2} = 45$$

Med class: 30 - 40

 $M = l_{1} + \frac{(l_{2} - l_{1})\left(\frac{N}{2} - cf\right)}{f}$  $= 30 + \frac{10(45 - 36)}{30}$ = 30 + 3 = 33M.D. from median  $= \frac{\sum f |x - M|}{\sum f}$  $= \frac{886}{90}$ = 9.84

Tutorial Workbook in Mathematical and Statistical Techniques

#### 

(5) Calculate Mean Deviation from Mode for the following distribution:

| Electricity<br>Consumption<br>000 units | No. of firms |                | x  | x - 36 | f x - 36 |
|-----------------------------------------|--------------|----------------|----|--------|----------|
| 10 – 20                                 | 3            |                | 15 | 21     | 63       |
| 20 - 30                                 | 12           | $\mathbf{f}_0$ | 25 | 11     | 132      |
| 30 - 40                                 | 15           | $\mathbf{f}_1$ | 35 | 1      | 15       |
| 40 – 50                                 | 13           | $\mathbf{f}_2$ | 45 | 9      | 117      |
| 50 - 60                                 | 2            |                | 55 | 19     | 38       |
|                                         |              |                |    |        | 365      |

#### Solution:

Modal class = 30 - 40

Mode = 
$$l_1 + \frac{(l_2 - l_1)(f_1 - f_0)}{2f_1 - f_0 - f_2}$$
  
=  $30 + \frac{10(15 - 12)}{2 \times 15 - 12 - 13}$   
=  $30 + \frac{10 \times 3}{5} = 36$   
M.D. from median =  $\frac{\sum f |x - Mode|}{\sum f}$   
=  $\frac{365}{45}$   
= 8.11

| (6) | Calculate | Standard | l Devia | ation | for | the | followin | ng | distributi | on: |
|-----|-----------|----------|---------|-------|-----|-----|----------|----|------------|-----|
|     | _         | <b>.</b> |         |       |     |     |          |    |            |     |

| Profits<br>000 units | No. of<br>firms | x  | fx   | fx <sup>2</sup> |
|----------------------|-----------------|----|------|-----------------|
| 10 – 20              | 8               | 15 | 120  | 1800            |
| 20 - 30              | 17              | 25 | 425  | 10625           |
| 30 - 40              | 22              | 35 | 770  | 26950           |
| 40 – 50              | 33              | 45 | 1485 | 66825           |
| 50 - 60              | 15              | 55 | 825  | 45375           |
| 60 – 70              | 5               | 65 | 325  | 21125           |
|                      |                 |    | 3950 | 172700          |

Solution:

64

$$\bar{x} = \frac{\sum fx}{\sum f} = \frac{3950}{100} = 39.5$$
  
S.D. 
$$= \sqrt{\frac{\sum fx^2}{\sum f} - (\bar{x})^2}$$
$$= \sqrt{\frac{172700}{100} - 39.5^2}$$
$$= \sqrt{1727 - 1560.25}$$
$$= \sqrt{166.75}$$
$$= 12.91$$

Tutorial Workbook in Mathematical and Statistical Techniques

### 

(7) Which of the following batsman is more consistent in his scores:

| Runs scored by Batsman A | 58 | 63 | 55 | 79 | 58 | 35 | 60 | 80 |  |
|--------------------------|----|----|----|----|----|----|----|----|--|
| Runs scored by Batsman B | 71 | 60 | 55 | 51 | 90 | 73 | 80 | 64 |  |
| Solution:                |    |    |    |    |    |    |    |    |  |

| $\overline{\mathbf{x}}$ | $=\frac{\sum x}{n}=\frac{488}{8}=61$                     | $\overline{y} = \frac{\sum y}{n} = \frac{544}{8} = 68$ |
|-------------------------|----------------------------------------------------------|--------------------------------------------------------|
| σ                       | $=\sqrt{\frac{\sum x^2}{n}-\left(\overline{x}\right)^2}$ | $\sigma = \sqrt{\frac{\sum y^2}{n} - (\bar{y})^2}$     |
|                         | $=\sqrt{\frac{3118}{8}-61^2}$                            | $=\sqrt{\frac{38192}{8}-68^2}$                         |
|                         | $=\sqrt{3898.5 - 3721}$                                  | $=\sqrt{4774 - 4624}$                                  |
|                         | $=\sqrt{177.5}$                                          | $=\sqrt{150}$                                          |
|                         | = 13.32                                                  | = 12.25                                                |
| CV                      | $=\frac{\sigma}{\overline{x}} \times 100$                | $CV = \frac{\sigma}{\overline{y}} \times 100$          |
|                         | $=\frac{13.32}{61} \times 100$                           | $=\frac{12.25}{68} \times 100$                         |
|                         | = 21.84                                                  | = 18.01                                                |

CV for batsman B is less.

 $\therefore$  Batsman B is more consistent.

(8) Which of the following investment plan is more consistent in its returns:

|           | <b>Returns by Plan A</b> | 35 | 41 | 62 | 51 | 40 | 25 | 30 | 44 |
|-----------|--------------------------|----|----|----|----|----|----|----|----|
|           | Returns by Plan B        | 46 | 65 | 49 | 64 | 58 | 71 | 50 | 61 |
| Solution: |                          |    |    |    |    |    |    |    |    |

| x  | $=\frac{\sum x}{n}=\frac{328}{8}=41$        | $\overline{y} = \frac{\sum y}{n} = \frac{464}{8} = 58$  |
|----|---------------------------------------------|---------------------------------------------------------|
| σ  | $= \sqrt{\frac{\sum x^2}{n} - (\bar{x})^2}$ | $\sigma = \sqrt{\frac{\sum y^2}{n} - (\overline{y})^2}$ |
|    | $=\sqrt{\frac{14412}{8}-41^2}$              | $=\sqrt{\frac{27464}{8}-58^2}$                          |
|    | $=\sqrt{1801.5 - 1681}$                     | $=\sqrt{3433-3364}$                                     |
|    | $=\sqrt{120.5}$                             | $=\sqrt{169}$                                           |
|    | = 10.98                                     | = 8.3                                                   |
| CV | $=\frac{\sigma}{\overline{x}} \times 100$   | $CV = \frac{\sigma}{\overline{y}} \times 100$           |
|    | $=\frac{10.98}{41} \times 100$              | $=\frac{8.3}{58} \times 100$                            |
|    | = 26.77                                     | = 14.32                                                 |

CV for plan B is less.

 $\therefore$  Plan B is more consistent.

(9) Calculate the combined Standard deviation for the following:

|             | Boys | Girls |
|-------------|------|-------|
| Number      | 30   | 70    |
| Mean Height | 120  | 100   |
| S.D. Height | 9    | 5     |

$$\begin{aligned} \bar{\mathbf{x}} &= \frac{\mathbf{n}_1 \bar{\mathbf{x}}_1 + \mathbf{n}_2 \bar{\mathbf{x}}_2}{\mathbf{n}_1 + \mathbf{n}_2} = \frac{30 \times 120 + 70 \times 100}{30 + 70} \\ &= \frac{10600}{100} = 106 \\ \mathbf{d}_1 &= \bar{\mathbf{x}} - \bar{\mathbf{x}}_1 \\ &= 120 - 106 \\ &= 14 \\ \mathbf{d}_2 &= \bar{\mathbf{x}} - \bar{\mathbf{x}}_2 \\ &= 100 - 106 \\ &= -6 \\ \sigma &= \sqrt{\frac{\mathbf{n}_1 (\sigma_1^2 + \mathbf{d}_1^2) + \mathbf{n}_2 (\sigma_2^2 + \mathbf{d}_2^2)}{\mathbf{n}_1 + \mathbf{n}_2}} \\ &= \sqrt{\frac{30(9^2 + 14^2) + 70(5^2 + 6^2)}{100}} \\ &= \sqrt{\frac{30(81 + 196) + 70(25 + 36)}{100}} \\ &= \sqrt{\frac{8310 + 4270}{100}} = \sqrt{\frac{12580}{100}} = 11.22 \end{aligned}$$

(10) Calculate the unknown values:

|                  | Men | Women | Total |
|------------------|-----|-------|-------|
| Number           | 50  | 100   | _     |
| Mean Weight      | 70  | —     | 60    |
| Variance. Weight | 9   | -     | 225   |

$$\bar{x} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2}{n_1 + n_2}$$

$$60 = \frac{50 \times 70 + 100 \times \bar{x}_2}{150}$$

$$9000 = 3500 + 100 \bar{x}_2$$

$$100 \bar{x}_2 = 5500$$

$$\bar{x}_2 = 55$$

$$d_1 = \bar{x} - \bar{x}_1$$

$$= 60 - 70$$

$$= -10$$

$$d_2 = \bar{x} - \bar{x}_2$$

$$= 60 - 55$$

$$= 5$$

$$\sigma = \sqrt{\frac{n_1 (\sigma_1^2 + d_1^2) + n_2 (\sigma_2^2 + d_2^2)}{n_1 + n_2}}$$

$$225 = \frac{50(9 + 100) + 100(\sigma_2^2 + 25)}{150}$$

$$33750 = 5450 + 100 \sigma_2^2 + 2500$$

$$25800 = 100 \sigma_2^2$$

$$258 = \sigma_2^2$$

$$\sigma_2 = 16.06$$

# Unit IV

# **Elementary Probability Theory**

(1) A box contains 5 red, 3 Green & 2 black pens. 3 pens are drawn from the box. What is the probability that (i) They are of same colour (ii) They are of different colours.

#### Solution:

$$\begin{array}{rcl} \hline 5R & 3G & 2B \\ n(S) &= {}^{10}C_3 \end{array}$$

(i) P(3 pens are of same colour) = P(3 Red) + P(3 Green) + (3 black)

Working 
$$= \frac{{}^{5}C_{3}}{{}^{10}C_{3}} + \frac{{}^{3}C_{3}}{{}^{10}C_{3}} + 0 = \frac{10}{120} + \frac{1}{120} + 0$$
  
 $= \frac{10 + 1}{120} = \frac{11}{120}$ 

(ii) P(they are of diff colour) = 1 - P (same colour)

$$= 1 - \frac{11}{120} = \frac{109}{120}$$

(2) There are 2 managers, 5 officers & 3 clerks in a department. A committee of 3 is to be formed. What is the probability that the committee contains:

(i) No clerk (ii) At least one clerk (iii) At least 2 officers

(i) 
$$n(S) = {}^{10}C_3 = 120$$
  
 $P(No clerk) = \frac{{}^7C_3}{{}^{10}C_3} = \frac{35}{120}$ 

(ii) P(At least one clerk) = 
$$1 - P(\text{No clerk}) = 1 - \frac{35}{120} = \frac{85}{120}$$

$$= \frac{{}^{5}C_{2} \times {}^{5}C_{1} + {}^{5}C_{3}}{{}^{10}C_{3}}$$
$$= \frac{10 \times 5 + 10}{120} = \frac{60}{120} = \frac{1}{2}$$

(3) Two fair dice are rolled What is the probability that the sum of the numbers on uppermost faces (i) Less than 7 (ii) Multiple of 3 (iii) Perfect square.

#### Solution:

$$n(S) = 36$$

A: Sum of numbers < 7

$$P(A) = \{(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1), (1,5), (2, 4), (3,3), (4,2), (5,1)\}$$
  
n(A) = 15  
$$P(A) = \frac{15}{36} = \frac{5}{12}$$

B: Multiple of 3 is 3, 6, 9, 12.

n(B) = 12  
P(B) = 
$$\frac{12}{36} = \frac{1}{3}$$

C: Perfect square 4 and 9.

$$P(C) = \{(1,3), (2,2), (3,1), (3,6), (4,5), (5,4), (6,3)\}$$
  
n(C) = 7  
$$P(C) = \frac{7}{12}$$

(4) Three unbiased coins are tossed. What is the probability that the tosses show:

(i) Two heads (ii) No head (iii) At least two tails.

#### Solution:

 $S = \{HHH, HTT, THT, TTH, THH, HTH, HHT, TTT\}$ 

A: 2 heads

A = {THH, HTH, HHT}  
P(A) = 
$$\frac{3}{8}$$

B: No head

$$B = \{TTT\}$$
$$P(B) = \frac{1}{8}$$

70

C: At least two tails.

C = {HTT, THT, TTH, TTT}  
n(C) = 4  
P(C) = 
$$\frac{4}{8} = \frac{1}{2}$$

(5) Eight students including a pair of twins are seated for a photograph. What is the probability that (i) The twins are together (ii) The twins are at the extremes?

#### Solution:

P(Twins are together) 
$$= \frac{7! \ 2!}{8!} = \frac{2}{8} = \frac{1}{4}$$
  
P(Twins are at the extremes)  $= \frac{2 \times 6!}{8!} = \frac{1}{28}$ 

(6) The time table for an examination is to be framed. There are seven subjects including a two papers in Management. What is the probability that (i) The Management papers are together (ii) Management papers are on 2<sup>nd</sup> and 5<sup>th</sup> day?

#### Solution:

P(Management papers together) = 
$$\frac{6! \ 2!}{8!} = \frac{1}{28}$$

P(Mgmt papers are on  $2^{nd}$  and  $5^{th}$  day) =  $\frac{1 \times 5!}{8!} = \frac{1}{336}$ 

(7) Two cards are drawn from a well shuffled pack of cards. What is the probability that (i) Both are red cards (ii) Both are picture cards (ii) One is an Queen and other is King (iv) One is Club and other is Heart card?Solution:

$$n(S) = {}^{52}C_2$$

A: Both are red

$$P(A) = \frac{{}^{26}C_2}{{}^{52}C_2} = \frac{25}{102}$$

B: Both are picture cards.

There are  $3 \times 4 = 12$  picture cards.

P(B) = 
$$\frac{{}^{12}C_2}{{}^{52}C_2} = \frac{12 \times 11}{52 \times 51} = \frac{11}{221}$$

C: One is Queen and other is King.

$$P(C) = \frac{{}^{4}C_{1} \times {}^{4}C_{1}}{{}^{52}C_{2}} = \frac{8}{663}$$

D: One is club and other is hear card.

There are 13 club cards and 13 heart cards.

P(D) = 
$$\frac{{}^{13}C_1 \times {}^{13}C_1}{{}^{52}C_2} = \frac{13}{102}$$

72

(8) The odds in favour of Seema wining the contest is 2 : 3. The odds against Reema wining the contest is 3:4 What is the probability that:

(i) Seema wins the contest (ii) Reema wins the contest (iii) Exactly one of them wins the contest.

#### Solution:

A: Seema wins.

$$P(A) = \frac{2}{5} \qquad P(\overline{A}) = \frac{3}{5}$$

B: Reema wins.

$$P(B) = \frac{4}{7} P(\overline{B}) = \frac{3}{7}$$

$$P(\text{Seema wins}) = P(A \cap B) + P(A \cap \overline{B})$$

$$= P(A) \times P(B) + P(A) \times P(\overline{B})$$

$$= \frac{2}{5} \times \frac{4}{7} + \frac{2}{5} \times \frac{3}{7} = \frac{2}{5}$$

$$P(\text{Reema wins}) = P(A \cap B) + P(\overline{A} \cap B)$$

$$= P(A) \times P(B) + P(\overline{A}) \times P(B)$$

$$= \frac{2}{5} \times \frac{4}{7} + \frac{3}{5} \times \frac{4}{7} = \frac{4}{7}$$

$$P(\text{Exactly one wins}) = P(A \cap \overline{B}) + P(\overline{A} \cap B)$$

$$= P(A) \times P(\overline{B}) + P(\overline{A}) \times P(B)$$

$$= \frac{2}{5} \times \frac{3}{7} + \frac{3}{5} \times \frac{4}{7}$$

$$= \frac{6 + 12}{35} = \frac{18}{35}$$

# (9) For the following distribution calculate: (i) P(X > 0) (ii) P(X <= 1) (iii) E(X) (iv) V(X)</li>

| (1) (X > 0) (11) | 1    |        |         |                                |
|------------------|------|--------|---------|--------------------------------|
| x                | P(X) | x.P(X) | x² P(X) |                                |
| - 2              | 0.05 | - 0.1  | 0.2     | $\sum P(x) = 1$<br>0.8 + k = 1 |
| - 1              | 0.15 | - 0.15 | 0.15    | k = 0.2                        |
| 0                | k    | 0      | 0       |                                |
| 1                | 0.3  | 0.3    | 0.3     |                                |
| 2                | 0.2  | 0.4    | 0.8     |                                |
| 3                | 0.1  | 0.3    | 0.9     |                                |
|                  |      | 0.75   | 2.35    |                                |

Solution:

$$P(X > 0) = P(x = 1) + (P(x = 2) + P(x = 3))$$
  
= 0.3 + 0.2 + 0.1 = 0.6  
$$P(X <= 1) = P(X = -2) + 2(X = -1) + P(X = 0) + P(X = 1))$$
  
= 0.05 + 0.15 + 0.2 + 0.3  
= 0.7  
$$E(x) = \sum x.P(x) = 0.75$$
  
$$E(x^2) = \sum x^2 P(x) = 2.35$$
  
$$V(x) = E(x^2) - [E(x)]^2$$
  
= 2.35 - (0.75)^2  
= 2.35 - 0.5625 = 1.7875

74

(10) If X is a random variable with probability mass function P(X = x) = kx; x = 0, 1, 2, 3, 4, 5 = 0 otherwise Find (i) K (ii) E(X) (iii) V(X)

| X                 | 0                   | 1                      | 2          | 3       | 4       |                                         |
|-------------------|---------------------|------------------------|------------|---------|---------|-----------------------------------------|
| P(X)              | kx                  | kx                     | kx         | kx      | kx      | $\sum P(X) = 1$<br>$\therefore 10k = 1$ |
|                   | = 0                 | k                      | 2k         | 3k      | 4k      | k = 0.1                                 |
|                   | = 0                 | 0.1                    | 0.2        | 0.3     | 0.4     |                                         |
| X.P(X)            | 0                   | 0.1                    | 0.4        | 0.9     | 1.6     |                                         |
|                   | E(x)                | $= \sum \mathbf{x}$ .] | P(x) = 3   | 3       |         |                                         |
| $E(x^2) = \sum$   | x <sup>2</sup> P(x) | = 0 +                  | 0.1 + 0    | ).8 + 2 | .7 + 6. | 4 = 10                                  |
| $V(x) = E(x^2) -$ | (E(x)) <sup>2</sup> | = 10 -                 | $-3^2 = 1$ | 10 – 9  | = 1     |                                         |

(11) In a certain business an entrepreneur can make a profit of Rs. 1,00,000 with probability 0.4 or suffer a loss of Rs. 50,000 with probability 0.6. Calculate expected profit of the entrepreneur.

#### Solution:

76

| X             | Profit       | Loss     |  |  |  |  |
|---------------|--------------|----------|--|--|--|--|
|               | 1,00,000     | - 50,000 |  |  |  |  |
| P(X)          | 0.4          | 0.6      |  |  |  |  |
| $E(x) = \sum$ | X.P(x)       |          |  |  |  |  |
| = 40          | 0,000 – 30,0 | 000      |  |  |  |  |
| = 10          | = 10,000     |          |  |  |  |  |

# UNIT V

# **Decision Theory**

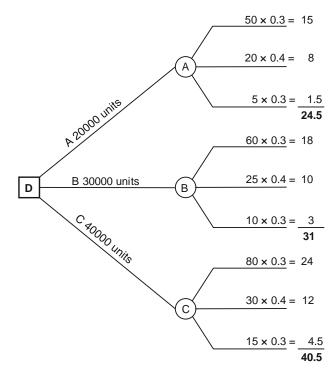
(1) A fruit seller has the option of buying 20, 40 or 60 watermelons at a rate of Rs. 50 per watermelon. He can sell each watermelon at the rate of Rs. 70 per watermelon. He expects a demand for 20, 40 or 60 watermelons. Note that he has to discard the unsold watermelons. Form a pay off table.

| Purchase<br>Sale<br>(demand) | 20                                    | 40                                     | 60                                        |
|------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------|
| 20                           | $20 \times 70 - 20 \times 50$ $= 400$ | $20 \times 70 - 40 \times 50$ $= -600$ | $20 \times 70 - 60 \times 50$<br>= - 1600 |
| 40                           | 20 × 70 – 20 × 50                     | 40 × 70 – 40 × 50                      | $40 \times 70 - 60 \times 50$             |
|                              | = 400                                 | = 800                                  | = - 200                                   |
| 60                           | 20 × 70 – 20 × 50                     | 40 × 70 – 40 × 50                      | 60 × 70 – 60 × 50                         |
|                              | = 400                                 | = 800                                  | = 1200                                    |

(2) The demand for a seasonal product is given below:

| Demand during the season | 40  | 50  | 60   | 70   |
|--------------------------|-----|-----|------|------|
|                          | 10  | 00  | 00   | 10   |
| probability              | 0.2 | 0.3 | 0.35 | 0.15 |
|                          |     |     |      | 2    |

The product costs Rs. 60 per unit and is sold at Rs. 80 per unit. If units are not sold within the season, they will have no market value. Form a pay off table.

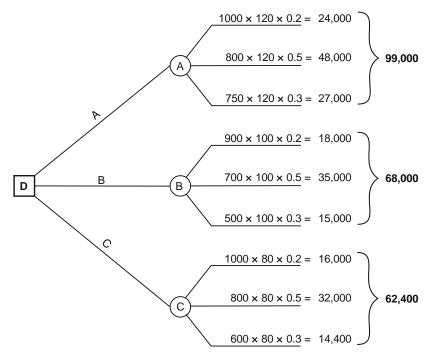

#### Solution:

78

|      |                  | 0.2                      | 0.3                         | 0.35                        | 0.15                                      |
|------|------------------|--------------------------|-----------------------------|-----------------------------|-------------------------------------------|
|      |                  | 40                       | 50                          | 60                          | 70                                        |
|      | Purchase<br>Sale | 8                        | 15                          | 21                          | 10.5                                      |
| 8    | $40 \times 0.2$  | 80 × 8 – 60 × 8<br>= 160 | 80 × 8 – 60 × 15<br>= - 260 | 80 × 8 – 60 × 21<br>= – 620 | 80 × 8 – 60 × 10.5<br>= 10                |
| 15   | $50 \times 0.3$  | 80 × 8 – 60 × 8<br>= 160 | 80 × 15 – 60 × 15<br>= 300  | 80 × 15 - 60 × 21<br>= - 60 | 80 × 15 – 60 × 10.5<br>= 570              |
| 21   | 60 × 0.35        | 80 × 8 – 60 × 8<br>= 160 | 80 × 15 – 60 × 15<br>= 300  | 80 × 21 – 60 × 21<br>= 420  | $80 \times 21 - 60 \times 10.5$<br>= 1050 |
| 10.5 | $70 \times 0.15$ | 80 × 8 – 60 × 8<br>= 160 | 80 × 15 – 60 × 15<br>= 300  | 80 × 21 – 60 × 21<br>= 420  | 80 × 10.5 – 60 × 10.5<br>= 210            |

(3) A auto company has to decide about the size of their new plant. Three alternatives of annual capacity (A) 20000 units (B) 30000 units and (C) 40000 units. The estimated profits for plant - A are 50 cr, 20 cr and 5 cr, if the demand is high, fair and low respectively. The corresponding sale figures for plant - B are 60 cr, 25 cr and 10 cr and that for plant - C are 80 cr, 30 cr and 15 cr respectively. The probabilities of the demand being high, fair and low are 0.3, 0.4 & 0.3 respectively. Suggest the optimal decision using decision tree.

#### Solution:




Optimum decision is plan C i.e. 40,000 units.

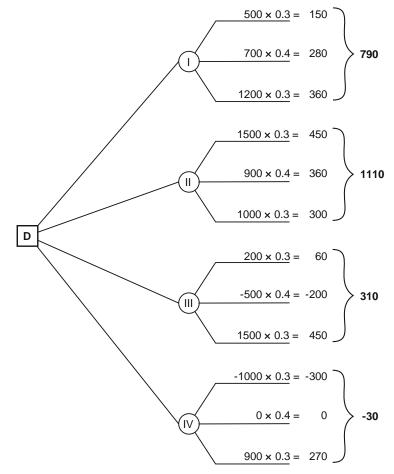
(4) A company has to decide about the type of body lotions (A, B or C) to be produced. The estimated sales figures for type A body lotion are 1000 units, 800 units and 750 units if the demand is high, fair and low respectively. The corresponding sale figures type B body lotion are 900 units, 700 units and 500 units and that for type C body lotion are 1000 units, 800 units and 600 units respectively. The estimated profits per unit for the three types of body lotions are Rs. 120, Rs. 100 and Rs. 80 respectively. The probabilities of the demand being high, fair and low are 0.2, 0.5 and 0.3 respectively. Suggest the optimal decision using decision tree.

#### Solution:

80



Optimum decision is type A body lotion.




(5) Associated Engineering company is evaluating four alternative investment options whose returns are based on the state of economy with following pay of matrix.

| State of |          | Dreh     |          |          |       |
|----------|----------|----------|----------|----------|-------|
| Economy  | Option 1 | Option 2 | Option 3 | Option 4 | Prob. |
| Fair     | 500      | 1500     | 200      | - 1000   | 0.3   |
| Good     | 700      | 900      | - 500    | 0        | 0.4   |
| Better   | 1200     | 1000     | 1500     | 900      | 0.3   |

Suggest the optimal decision using decision tree.

#### Solution:



Optimum decision is option II.

(6) The decision maker has 4 Courses of actions A1, A2, A3. A4 to choose from. There are 4 states of nature S1, S2, S3 & S4. Decide the best action using (i) EMV (ii) EOL methods.

|                 | <b>Course of Actions</b> |    |    |    |       |
|-----------------|--------------------------|----|----|----|-------|
| State of nature | A1                       | A2 | A3 | A4 | Prob. |
| S1              | 20                       | 30 | 35 | 40 | 0.2   |
| S2              | 40                       | 30 | 40 | 55 | 0.2   |
| S3              | 25                       | 40 | 50 | 65 | 0.3   |
| S4              | 40                       | 30 | 45 | 40 | 0.3   |

Solution:

 $EMV(A_1) = 20 \times 0.2 + 40 \times 0.2 + 25 \times 0.3 + 40 \times 0.3 = 31.5$ 

 $EMV(A_2) = 30 \times 0.2 + 30 \times 0.2 + 40 \times 0.3 + 30 \times 0.3 = 33$ 

EMV(A<sub>3</sub>) =  $35 \times 0.2 + 40 \times 0.2 + 50 \times 0.3 + 45 \times 0.3 = 43.5$ 

 $EMV(A_4) = 40 \times 0.2 + 55 \times 0.2 + 65 \times 0.3 + 40 \times 0.3 = 50.5$ 

Best Action is A<sub>4</sub>.

|    | A1 | A2 | <b>A</b> 3 | A4 | Prob. |
|----|----|----|------------|----|-------|
| S1 | 20 | 10 | 5          | 0  | 0.2   |
| S2 | 15 | 25 | 15         | 0  | 0.2   |
| S3 | 40 | 25 | 15         | 0  | 0.3   |
| S4 | 5  | 15 | 0          | 5  | 0.3   |

EOL(A<sub>1</sub>) =  $20 \times 0.2 + 15 \times 0.2 + 40 \times 0.3 + 5 \times 0.3 = 20.5$ EOL(A<sub>2</sub>) =  $10 \times 0.2 + 25 \times 0.2 + 25 \times 0.3 + 15 \times 0.3 = 19$ EOL(A<sub>3</sub>) =  $5 \times 0.2 + 15 \times 0.2 + 15 \times 0.3 + 0 \times 0.3 = 8.5$ EOL(A<sub>4</sub>) =  $0 + 0 + 0 + 5 \times 0.3 = 1.5$ 

EOL is minimum for  $A_4$ .

 $\therefore$  A<sub>4</sub> is the best.

(7) The decision maker has 4 Courses of actions A1, A2, A3, A4 to choose from. There are 4 states of nature S1, S2, S3 & S4. Decide the best action using (i) EMV (ii) EOL methods:

|                 | (     | Course o |       |       |       |
|-----------------|-------|----------|-------|-------|-------|
| State of nature | A1    | A2       | A3    | A4    | Prob. |
| S1              | 300   | - 200    | 350   | 400   | 0.15  |
| S2              | 500   | 700      | - 200 | 500   | 0.35  |
| S3              | 250   | - 450    | 650   | 600   | 0.30  |
| S4              | - 450 | 500      | 600   | - 700 | 0.20  |

Solution:

$$\begin{split} & EMV(A_1) &= 300 \times 0.15 + 500 \times 0.35 + 250 \times 0.3 - 450 \times 0.2 = 205 \\ & EMV(A_2) &= -200 \times 0.15 + 700 \times 0.35 - 450 \times 0.3 + 500 \times 0.2 = 180 \\ & EMV(A_3) &= 350 \times 0.15 - 200 \times 0.35 + 650 \times 0.3 + 600 \times 0.2 = 297.5 \\ & EMV(A_4) &= 400 \times 0.15 + 500 \times 0.35 + 600 \times 0.3 - 700 \times 0.2 = 275 \end{split}$$

EMV is maximum for A<sub>3</sub>.

 $\therefore$  A<sub>3</sub> is the best.

| <b>Regret Table</b> | e |
|---------------------|---|
|---------------------|---|

|    | <b>A</b> 1 | A2   | A3  | A4   |      |
|----|------------|------|-----|------|------|
| S1 | 100        | 600  | 50  | 0    | 0.15 |
| S2 | 200        | 0    | 900 | 200  | 0.35 |
| S3 | 400        | 1100 | 0   | 50   | 0.3  |
| S4 | 1050       | 100  | 0   | 1300 | 0.2  |

EOL(A<sub>1</sub>) =  $100 \times 0.15 + 200 \times 0.35 + 400 \times 0.3 + 1050 \times 0.2 = 415$ EOL(A<sub>2</sub>) =  $600 \times 0.15 + 0 \times 0.35 + 1100 \times 0.3 + 100 \times 0.2 = 620$ EOL(A<sub>3</sub>) =  $50 \times 0.15 + 900 \times 0.35 + 0 + 0 = 322.5$ EOL(A<sub>4</sub>) =  $0 + 200 \times 0.35 + 50 \times 0.3 + 1300 \times 0.2 = 345$ 

EOL is minimum for  $A_3$ .

 $\therefore$  A<sub>3</sub> is the best.

- (8) A company is to launch 3 models of motorbikes model I, model II & model III with estimated levels of demands Best, Better Good with probabilities 0.2, 0.5 & 0.3. Estimated profits in lacs of Rs. Is given below. Use (i) EMV (ii) EOL criteria to select the best decision.

|                 | Coι |     |    |       |
|-----------------|-----|-----|----|-------|
| State of nature | A1  | A2  | A3 | Prob. |
| Best            | 10  | 20  | 12 | 0.2   |
| Better          | 8   | 8   | 8  | 0.5   |
| Good            | 0   | - 5 | 0  | 0.3   |

Solution:

$$EMV(A_1) = 10 \times 0.2 + 8 \times 0.5 + 0 \times 0.3 = 6$$
  

$$EMV(A_2) = 20 \times 0.2 + 8 \times 0.5 - 5 \times 0.3 = 6.5$$
  

$$EMV(A_3) = 12 \times 0.2 + 8 \times 0.5 + 0 \times 0.3 = 6.4$$

EMV is maximum for A<sub>2</sub>.

 $\therefore$  A<sub>2</sub> is the best.

#### **Regret Table**

|                      |                        | -         |    |    |       |  |
|----------------------|------------------------|-----------|----|----|-------|--|
|                      |                        | <b>A1</b> | A2 | A3 | Prob. |  |
|                      | S1                     | 10        | 0  | 8  | 0.2   |  |
|                      | S2                     | 0         | 0  | 0  | 0.5   |  |
|                      | S3                     | 0         | 5  | 0  | 0.3   |  |
| EOL(A <sub>1</sub> ) | = 10 >                 | × 0.2 = 2 |    |    |       |  |
| EOL(A <sub>2</sub> ) | $= 5 \times 0.3 = 1.5$ |           |    |    |       |  |
| EOL(A <sub>3</sub> ) | = 8 × 0.2 = 4          |           |    |    |       |  |
| minimum for A        |                        |           |    |    |       |  |

EOL is minimum for A<sub>2</sub>.

 $\therefore$  A<sub>2</sub> is the best.

(9) Given the following pay off table. Suggest the best action using (i) Maximin (ii) Maximax (iii) Minimax Regret (iv) Laplace criterion:

|                 | <b>Course of Actions</b> |     |      |     |  |
|-----------------|--------------------------|-----|------|-----|--|
| State of nature | A1                       | A2  | A3   | A4  |  |
| S1              | 300                      | 900 | - 35 | 0   |  |
| S2              | 700                      | 0   | 450  | 400 |  |
| S3              | - 400                    | 100 | 0    | 800 |  |
| S4              | - 225                    | 50  | 200  | 0   |  |

#### Solution:

| Min                                   | - 400 | 0     | - 35   | 0   |  |
|---------------------------------------|-------|-------|--------|-----|--|
| Max                                   | 700   | 900   | 450    | 800 |  |
| Avg                                   | 93.75 | 262.5 | 153.75 | 300 |  |
| Maximin = Max $(-400, 0, -35, 0) = 0$ |       |       |        |     |  |

Maximin = Max (-400, 0, -35, 0) = 0

∴ best is A2, A4.

 $\therefore$  best is A2.

VVV

Maximax = Max (700, 900, 450, 800) = 900

.

= 700

Laplace = Max (93.75, 262.5, 153.75, 300) = 300 ∴ best is A4.

|         |                             | A1   | A2  | A3  | A4  |  |
|---------|-----------------------------|------|-----|-----|-----|--|
|         | S1                          | 600  | 0   | 935 | 900 |  |
|         | S2                          | 0    | 700 | 250 | 300 |  |
|         | S3                          | 1200 | 700 | 800 | 0   |  |
|         | S4                          | 425  | 150 | 0   | 200 |  |
|         | Max                         | 1200 | 700 | 935 | 900 |  |
| Minimax | = Min (1200, 700, 935, 900) |      |     |     |     |  |

#### **Regret Table**

 $\therefore$  best is A2.

(10) Given the following pay-off table suggest best course of action according to (i) Maximin, (ii) Maximax, (iii) Laplace and (iv) Minimax Regret Criterion:

|                 | <b>Course of Actions</b> |        |        |        |  |  |
|-----------------|--------------------------|--------|--------|--------|--|--|
| State of nature | A1                       | A2     | A3     | A4     |  |  |
| S1              | - 6000                   | - 4000 | - 3000 | - 2000 |  |  |
| S2              | 1500                     | 2000   | 0      | 1700   |  |  |
| S3              | 1500                     | 3000   | 2000   | 3500   |  |  |
| S4              | - 1000                   | 0      | 3000   | 8000   |  |  |
| <b>S</b> 5      | 3000                     | 4000   | 6000   | 10000  |  |  |

#### Solution:

Laplace

Minimax

| Min       | 1500     | - 4000      | - 3000      | - 2000       |                              |
|-----------|----------|-------------|-------------|--------------|------------------------------|
| Max       | 3000     | 4000        | 6000        | 10000        |                              |
| Laplace   | - 200    | 1000        | 1600        | 4240         |                              |
| Maximin = | Max (150 | 00, - 4000, | - 3000, - 2 | 2000) = 1500 | ) $\therefore$ A1 is the bes |

Maximax = Max (3000, 4000, 6000, 10000) = 10000

= Max (- 200, 1000, 1600, 4240) = 4240

 $\therefore$  A4 is the best  $\therefore$  A4 is the best

#### **Regret Table**

|                               | <b>A1</b> | A2   | A3   | A4  |  |  |
|-------------------------------|-----------|------|------|-----|--|--|
| S1                            | 4000      | 2000 | 1000 | 0   |  |  |
| S2                            | 500       | 0    | 2000 | 300 |  |  |
| S3                            | 2000      | 500  | 1500 | 0   |  |  |
| S4                            | 9000      | 8000 | 5000 | 0   |  |  |
| S5                            | 7000      | 6000 | 4000 | 0   |  |  |
| Max                           | 9000      | 8000 | 5000 | 300 |  |  |
| = Min (9000, 8000, 5000, 300) |           |      |      |     |  |  |

= 300

 $\therefore$  A4 is the best

(11) Given the following pay off table. Suggest the best action using (i) Maximin (ii) Maximax (iii) Minimax Regret (iv) Laplace criterion:

|                 | Course of Actions |        |        |        |  |  |
|-----------------|-------------------|--------|--------|--------|--|--|
| State of nature | Plan A            | Plan B | Plan C | Plan D |  |  |
| High            | - 200             | 600    | 0      | - 300  |  |  |
| Moderate        | 250               | 400    | 300    | 0      |  |  |
| Low             | 450               | - 800  | 500    | 150    |  |  |

#### Solution:

|                                                   | Min                                      | - 200 | - 800 | 0     | - 300 |           |
|---------------------------------------------------|------------------------------------------|-------|-------|-------|-------|-----------|
|                                                   | Max                                      | 450   | 600   | 500   | 150   |           |
|                                                   | Laplace                                  | 166.6 | 66.6  | 266.6 | - 50  |           |
| Maximin = Max (- 200, - 800, 0, - 300) = 0        |                                          |       |       |       |       |           |
|                                                   | Maximax = Max (450, 600, 500, 150) = 600 |       |       |       |       |           |
| Laplace = Max $(166.6, 66.6, 266.6, -50) = 266.6$ |                                          |       |       |       |       | Plan C is |

Plan C is the best. Plan B is the best. Plan C is the best.

#### **Regret Table**

|                                            |     | Α   | В    | С   | D   |
|--------------------------------------------|-----|-----|------|-----|-----|
|                                            | S1  | 800 | 0    | 600 | 900 |
|                                            | S2  | 150 | 0    | 100 | 400 |
|                                            | S3  | 50  | 1300 | 0   | 350 |
|                                            | Max | 800 | 1300 | 600 | 900 |
| Minimax Regret = Min (800, 1300, 600, 900) |     |     |      |     |     |
| = 600                                      |     |     |      |     | Pla |

Plan C is the best.